Gas-Phase Constantsa for AP (Ammonium Perchlorate) Decomposition Initiation Reactions
Reaction Temp (K) Pressure Rate Constant
HOClO3 = ClO3 + OH (Ar) b 300 - 2500 0
¥
760
2.81´1031 T-11.2 exp(-29418/T)
1.45´1017 exp(-26500/T)
5.00´1051 T-11.64 exp(-30700/T)
HOClO2 = OClO + OH (N2)b 300 -2500 0
¥
1.26´1017 T-7.60 exp(-17738/T)
4.07´1021 T-1.62 exp(-17383/T)
H + HOClO3 = H2 + ClO4 300 - 3000 c 1.47´10-18 T2.03 exp(-7959/T)
H + HOClO3 = HO + HOClO2   300 - 3000 c 3.33´10-18 T2.02 exp(-6878/T)
HO + HOClO3 (Ar)b = products 200 - 500
500 - 1000

760
760

3.27´10-98 T26.2 exp(14191/T)
1.27´10-23 T3.4 exp(-747/T)
OClO = O + ClO (N2)b 200 - 2500 0
¥
1.64´10-47 T11.0 exp(-16648/T)
1.11´1016 T-0.28 exp(-29567/T)
ClOO = Cl + O2 (N2)b 200 - 2500 0
¥
4.67´1015 T-0.41 exp(-1897/T)
4.87´1015 T-0.59 exp(-2585/T)
ClO3 = 3O + OClO (Ar) b 500 - 2500 0
¥
6.24´101 T-3.28 exp(-13890/T)
1.5´1020 T-1.1 exp(-18360/T)
ClO4 = s-ClO3 + 3O (Ar)b 500 - 2500 0
¥
1.59´1023 T-9.0 exp(-24266/T)
5.20´1020 T-1.3 exp(-23215/T)
HO + ClO = products (He) 200 - 500 < 200 atm 5.27´10-9 T-1.03 exp(-40/T)
OH + ClO = HO2 + Cl
               = HCl + O2
500 - 2500 < 200 atm
< 200 atm
3.40´10-13 T0.3 exp(725/T)
5.85´10-19 T1.67 exp(1926/T)
OH + OClO = products (N2)b 200 -1000 c 0.78´10-20 T2.25 exp(2100/T)
HO + OClO = HOO + ClO
                  = HOCl + 1O2
                  = sup> 1HOClO2
200 - 1000
200 - 1000
200 - 500
500 -1000
1
c
c
c
1.22´10-22 T2.75 exp(1682/T)
5.47 10-20 T2.07 exp(2064/T)
1.37 104 T-6.61 exp(-536/T)
4.99 1034 T-22.36 exp(-9807/T)
HO + OClO = 1HOClO2  (N2) 200 - 2500
200 - 1000
1000 - 2500
¥
0
0
3.24´10-11 T0.28 exp(-18/T)
1.28´10-13 T-6.36 exp(-635/T)
2.91´10-13 T-8.42 exp(-11500/T)
OH + ClO3 = HOClO3
                 = HO2 + ClO2 (Ar)
300 - 3000 ¥
¥
3.2´10-10 T0.07 exp(-25/T)
2.1´10-10 T0.09 exp(-18/T)
HO2 + ClO = products (N2) 150 - 600 ¥
0
9.04´10-17 T1.22 exp(897/T)
9.33´10-24 T-3.45 exp(472/T)
HO2 + ClO = HOCl + 3O2 150 - 1000 760 1.64´10-10 T-0.64 exp(107/T)
HO2 + ClO = HOCl + 3O2
                 = HOCl + 1O2
                 = HO + ClOO
                 = HO + OClO
500 - 2500 760
760
760
760
1.30´10-20 T2.37 exp(-2572/T)
1.39´10-21 T2.26 exp(226/T)
7.61´10-19 T1.80 exp(-1065/T)
2.22´10-21 T2.32 exp(-2566/T)
HO2 + OClO = HOOClO2 (Ar) 300 - 2500 0
¥
14.4 T-13.1 exp(-963/T)
(3.5 ± 0.5)´1010
HO2 + OClO = HOOClO2
                   = HOClO + O2
                   = HO + ClO3
300 - 2500 760
760
760
8.4´1020 T-13.5 exp(-629/T)
1.0´10-26 T3.6 exp(-1056/T)
1.4´10-14 T0.93 exp(-14718/T)
O + ClO = OClO (N2) 200 - 1000 0
¥
8.6´10-21 T- 4.1 exp(-420/T)
4.33´10-11 T-0.03 exp(43/T)
O + ClO = O2 + Cl (N2) 200 - 1000 c 4.12´10-11 T0.06exp(42/T)
Cl + O2 = ClOO (N2) 150 - 1000 0
¥
2.38´10-20 T-4.92 exp(-617/T)
6.64´10-11 T0.004 exp(-8.0/T)
ClO + ClO = ClOOCl (N2)

ClO + ClO = ClOClO (N2)
180 - 500

180 - 500
0
¥
0
¥
8.31´10-20 T-4.96 exp(-336/T)
1.60´10-9 T-0.67 exp(-64/T)
1.72´10-14 T-6.99 exp(-926/T)
6.40´10-9 T-0.78 exp(-76/T)
ClOOCl = ClO + ClO (N2) 180 - 500 0
¥
4.64´108 T -5.2 exp(-10159/T)
6.3´1019 T-1.32 exp(-9999/T)
ClOClO = ClO + ClO (N2) 180 - 500 0
¥
6.81´106 T-4.9 exp(-6488/T)
5.99´1020 T-1.63 exp(-6474/T)
ClO + ClO = Cl2 + O2
                = Cl + ClOO
                = Cl + OClO
200 - 1500 c
c
c
1.09´10-13 T0.66 exp(-1892/T)
1.36´10-13 T0.77 exp(-2168/T)
6.26´10-11 T0.005 exp(-2896/T)
ClO + OClO = ClOCl(O)O (N2) 200 - 400 0
¥
1.10´10-17 T-5.5 exp(-398/T)
2.98´10-10
ClO + OClO = ClOO + ClO 500 -2500 c 1.03´10-22 T2.76 exp(-78/T)
ClO + OClO = ClOCl + O2 500 -2500 c 9.63´1022 T2.40 exp(-1665/T)
Cl + ClOOCl = Cl2 + ClOO 200 - 1000 c 1.53´10-13 T1.1 exp(118/T)
Cl + ClOOCl = Cl2O+ ClO 200 - 1000 c 2.19´10-14 T0.70 exp(-1110/T)
ClO + NO = Cl + NO2 (He) 200 - 1000
1200 - 3000
c
c
5.18´10-13 T0.39 exp(383/T)
1.92´10-9 T-0.66 exp(-573/T)
Cl + NO2 = products (He) 200 -1000 0
¥
9.33´10-16 T-5.59 exp(-771/T)
1.34´10-10 T0.255 exp(3/T)
ClNO2 = Cl + NO2 (Ar) 400 - 1500 0
¥
3.13´1031 T-12.1 exp(-21081/T)
1.65´1019 T-1.0 exp(-16834/T)
ClO + NO2 = ClONO2 (N2) 200 - 600
800- 2500
200 - 2500
0
0
¥
6.78´10-16 T-6.05 exp(-468/T)
2.04´10-4 T-10.99 exp(4451.5/T)
(2.3 ± 0.1)´10-10
ClONO2 = ClO + NO2 (N2) 200 - 800
1000 - 2500
200 -2500
0
0
¥
8.62´1019 T-8.69 exp(-14345/T)
1.32´10-9 T-0.28 exp(-4948/T)
1.44´1023 T-1.82 exp(-13677/T)
Cl + NH2 = ClNH2 (N2) 200 - 2500
200 - 1000
1500 - 2500
0
¥
¥
3.54´10-17 T-4.76 exp(-586/T)
1.2´10-10 T0.196 exp(-16.4/T)
4.8´1010
Cl + NH2 = 3NH + HCl (N2) 200 - 700
1000 - 2500
0 - 760
0 - 760
3.5´10-10 T-0.13 exp(60/T)
1.367´10-13 T0.90 exp(841/T)
ClO + NH2 = HCl + HNO
ClO + NH2 = NH2O + Cl
ClO + NH2 = HOCl + 3
200 - 2500
200 - 2500
200 - 2500
c
c
c
1.45´10-9 T-0.65 exp(23/T)
4.01´10-11 T-0.15 exp(142/T)
4.78´10-29 T5.12 exp(-1035/T)
OClO + NH2 = HOCl + HNO
OClO + NH2 = ClO + NH2
200 - 2500
200 - 2500
c
c
3.56´10-25 T2.98 exp(879/T)
2.83´10-21 T2.55 exp(744/T)
ClO3 + NH2 = HOClO + HNO
ClO3 + NH2 = OClO + NH2O
200 - 500
700 - 2500
200 - 2500
c
c
c
2.41´10-14 T0.195 exp(129/T)
5.79´10-17 T1.01 exp(629/T)
9.9´10-9 T-0.47 exp(-24/T)
ClO4 + NH2 = ClO3 + NH2O 200 - 500
700 - 2500
c
c
1.39´10-9 T-0.18 exp(31/T)
1.48´10-6 T-1.11 exp(-634/T)
Cl + NH3 = HCl + NH2 200 - 3000 c 1.77´10-16 T1.88 exp(-1292/T)
ClO + NH3 = HOCl + NH2 200 - 3000 c 8.17´10-27 T3.96 exp(-4504/T)
ClO2 + NH3 = HOClO + NH2 600 - 3000 c 3.19´10-24 T4.09 exp(-14799/T)
ClO3 + NH3 = HOClO2 + NH2 200 - 3000 c 6.04´10-16 T1.45 exp(-2137/RT)
ClO4 + NH3 = HOClO3 + NH2 200 - 1000
1000 - 3000

10-5
102 atm

0.109´T-2.81 exp(-519/T)
1.22´10-19 T2.52 exp(3983/T)

a. Rate constants are given in units of s-1 and cm3molecule-1s-1 for unimolecular reactions in the first-order and second-order, and in units of cm3 molecule-1 s-1 and cm6 molecule-2 s-1 for bimolecular reactions in the second-order and third-order, respectively.
b. Third body employed in the calculations.
c. Pressure-independent.

References cited in this table.
[1] R. S. Zhu and M. C. Lin. PhysChemComm 25, 1-6, 1, (2001).
[2] Z. F. Xu , R. S. Zhu, and M. C. Lin, J. Phys. Chem. 107, 1040 (2003).
[3] R. S. Zhu, M. C. Lin, a chapter of book on Energetic Materials: Initiation, Combustion and Modeling, P. Politzer, ed., Elsevier Science Pub., in press.
[4] R. S. Zhu and M. C. Lin J. Chem. Phys. 119, 2075 (2003).
[5] R. S. Zhu, and M. C. Lin, J. Phys. Chem.,106, 8386 (2002).
[6] R. S. Zhu, Z. F. Xu and M. C. Lin, J. Chem Phys. 116,7452, 2002.
[7] Z. F. Xu , R. S. Zhu, and M. C. Lin, J. Phys. Chem. 107, 3841 (2003).
[8] R. S. Zhu, and M. C. Lin, J. Chem. Phys. 118, 4094 (2003).
[9] R. S. Zhu, M. C. Lin, J. Chem Phys. 118, 8645 (2003).
[10] R. S. Zhu, M. C. Lin, J. Phys. Chem. A, 107 , 3836 (2003).
[11] R. S. Zhu, M. C. Lin, J. Chem Phys. In Preparation.
[12] R. S. Zhu, M. C. Lin, J. Phys. Chem. In Preparation.
[13] R. S. Zhu, Z. F. Xu, M. C. Lin, J. Chem. Phys. In Preparation.
[14] R. S. Zhu, Z. F. Xu, M. C. Lin, J. Chem. Phys. In Preparation.
[15] R. S. Zhu, Z. F. Xu , M. C. Lin, J. Phys. Chem. In Preparation.
[16] Z. F. Xu, R. S. Zhu, M. C. Lin, J. Phys. Chem. In Preparation.
[17] Z. F. Xu, R. S. Zhu, M. C. Lin, J. Chem. Phys. In Preparation.